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Fractal growth of epitaxial surface clusters with elastic interaction
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The fractal growth of clusters adsorbed on crystal surfaces has been studied by Monte Carlo simulations.
Elastic interactions between the atoms through the substrate have been included. Attractive and repulsive
interaction potentials 1# have been used, including a varying cutoff for the range of interaction. As an
important result we find that there exists a crossover radius beyond which the fractal dimension of the cluster
corresponds to the fractal dimension of conventional two-dimensional diffusion limited aggregation. The
crossover radius itself and the properties of the cluster inside that radius depend sensitively on the details of the
interaction. The results have been analyzed by a scaling theory. Furthermore, we have implemented a multigrid
scheme which allows for very efficient simulation of a large number of mobile atoms with long-range inter-
action on the surfacéS1063-651%99)09404-(

PACS numbds): 68.10.Et, 68.55-a

[. INTRODUCTION some cutoff radiug; furthermore, attractive interactions
also were considered for comparison. As a main result we

The formation of monatomic layers of atoms adsorbed orfind a change of properties of the growing cluster when the
a substrate of different atoms or molecules is a process dRdius exceeds a crossover radiys This crossover radius
great interest in crystal growtfi—3], and for the manufac- depends on the strength and the range of interaction, but
turing of semiconductor devices. Under low deposition rategemains finite even for the long-range elastic interaction
clusters are formed on flat substrates. If the surfacavithout finite cutoff.
diffusivity—and in particular the edge diffusivity—is suffi- ~ The paper is organized as follows. First we describe the
ciently low, the clusters will show a ramification during algorithms schematically. This concerns the simple algo-
growth. This process has been studied in great detail undeithm for DLA with vanishing density of adsorbate atoms far
the title “diffusion limited aggregation’(DLA) [4]. away from the cluster and also the multigrid algorithm for a

This so-called epitaxial growth of a new layer on a sub-finite density of atoms at infinity, both algorithms, of course,
strate of different material leads generally to a deformatiorbeing effective for long-range potentials. Then we give the
of the substrate lattice because of a mismatch of the latticBumerical results, and finally we present our scaling concept
constants of the substrate and the adsorbed material. A singd show that it is consistent with the numerical results
adsorbed cluster up to some limiting size will acquire thewithin the present numerical accuracy.
lattice structure of the substrate apart from a small local
changg in the lattice p:_:xrameter.. This “coherent” lattice de- Il ALGORITHMS FOR LONG-RANGE POTENTIALS
formation causes elastic stress in both the adsorbate and the
substrate, leading to effective long-range interactions be- The basis for our cluster-growth algorithm is the original
tween the adsorbate atoms mediated by the substrate defanethod of Witten and Sandé#,14] for diffusion limited
mations. This effective elastic interaction potential betweeraggregation without interaction, in the version of Meakin
any two adsorbed atoms is typically repulsive, and dependgl5] for a reduced start radius. With interaction between
on their distance like 1/r3 [5-8]. The total interaction en- particles the probability for starting a particle on the start
ergy in an adsorbed cluster is then obtained by the summaadius is no longer isotropic over the circle, but depends,
tion of the individual contributions from any two pairs of through a Boltzmann weight expUs/T), upon the local po-
atoms, as long as the cluster remains coherent with the sukential on the start circlgl2]. The process is now described
strate. in some detail.

A number of recent investigations have looked at DLA  The substrate is represented as a square lattice of at least
with interactiong9,10]. Some investigations even deal with 200G sites. One adatom is fixed at the center. Two circles
long-range interactiongl1-13 of the type discussed here, are defined, an outer one with a capture radigyg~1000
but we are not aware of any attempts to study the asymptotikattice site and an inner one with a start radiys 100 lattice
behavior of the structures for large cluster sizes. In additionsite. The lattice sites carry the potential from the initial cen-
we have varied the range of interaction systematically bytral adatom approximately equal tdy, /r3. A new particle is
introducing a sharp cutoff which limits ther®/potential at  then released from the start circle, the position chosen in

proportion to the Boltzmann weight, as mentioned above. In

principle one should choose the probability according to a

*Permanent address: Laboratoire de Spectrometrie, Univesite first passage-time calculation, assuming that the particle
Fourier, Grenoble, France. starts originally from the outer capture radius. The Boltz-
"Permanent address: Laboratoire de Physique et de lidatien  mann weight introduces an error which is small when the

des Milieux Condense Universitel. Fourier, Grenoble, France.  potential energy close to the cluster is large, and when the
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start radius is far away from the cluster. A small start radius
saves computing time. For different values of the prefactor
U, of the interaction potential, we have checked that the
error introduced by a small start radius, which is very close
to the most prominent point of the cluster, is not detectable
within our available accuracy. Practically, start radii with 0 1 2 3
distances between four and 100 lattice units from the cluster

were used. 0}[ :E/////J&\\\
4

After the particle is started, it performs diffusion jumps in
a potential field. Several Monte Carlo algorithms were 0 1 2 3 5 6 7
tested; the results presented here were largely obtained by a <
Metropolis aIgorithrF;l. This algorithm statéﬂ;%] t)tqat a new y LTI [ | ] ]
trial state is accepted, if either the energy differends to 0123 456 7 8 9101112131415
the old state is negative or else if exp{U/T)>X;, where FIG. 1. Schematic structure of successive levels of coarseness in
X, is a random number evenly distributed in the intervaloyr multigrid method. The reference site on each level is marked by
between 0 and 1, andlis the temperature of the system. In an open circle. The other circles and the diamond mark nearest and
each diffusion jump we pick one of four nearest-neighborext-nearest neighbors on each level, interacting with the reference
sites at random as a trial site, and then make a Metropoligarticle. The diamond corresponds to a box, whose interactions
decision for acceptance. have already been taken into account on the level just below. For

This diffusion process continues until either the particlefurther details, see the text.
wanders outside the capture radius, or until it hits the central
cluster (one adatom, at first When it exceeds the capture
radius it is removed, and a new particle is inserted at the stafites. On level 1 we have performed a coarse graining by a
radius. When it hits the central cluster at a nearest-neighbdgctor of 2, so that we have™2?* sites. The mesh size ac-
position, it becomes immobilized and is added to the clustercordingly is also increased by a factor 2. On level 2 another
Then the potential from this particle is added to all latticecoarse graining takes place, so that we hale?sites, and
sites inside the capture radius. After this a new particle isso on. If there is a particle on level 0 at positiog) this
inserted at the start radius, and so forth. The computing timparticle will also appear in the next higher level at position
is not exorbitantly larger than for DLA without interaction, i,=Int(iy/2), wherei,(m=0,1,2,3... ,N) are all truncated
since a full diffusion process on a lattice with diameter integers. Note that in principle there may be an arbitrary
takes ~L2? steps, and so does the updating of the two-number of particles at each sitg(m>0). For example, if
dimensional lattice after incorporating one atom into thethere are two particles sitting at sites 2 and 3 on level 0, they
cluster. This process works well as long as there is only on®oth will appear on site 1 on level 1 and on site 0 on level 2
moving particle in the system. and higher levels.

If we have a nonzero density of moving particles with  The interaction between one particle and all other par-
long-range interaction in the system, this direct procedure igcles in this one-dimensional lattice is now computed as
too time consuming. We therefore introduced a multigridfollows. We assume that all particles have been put already
algorithm which we now describe in somewhat sketchyin all the log(L) levels of our multigrid system. As an ex-
form. Most of the following results, however, have been ob-ample we are discussing now specifically a particle on site
tained with the simpler algorithm described here above. i3=10, the counting of lattice-sites on each lewebtarting

The multigrid algorithm starts from the idea that the long-ati,=0,1,2 ... (see Fig. 1
range interaction potential is sufficiently smooth, like a We first look at the nearest-neighbor interaction of par-
power-law interaction. In this case the relative variation ofticle 10, with particle 11 on level 0. Note that on level 1
the interaction, depending upon the distance of the two pamparticleio=10 would be in sité,;=5 together with its neigh-
ticles, decreases with the distance. Instead of evaluating tHeor io=11, the interaction between those particles has al-
interaction between all pairs of particles explicitly, one canready been treated on level 0. We now can directly treat the
first average over some region of space containing a group afiteraction between siteig=5 andi;=4 on level 1, and
particles, and then take the interaction between one specifinen proceed to the next higher level. Note that in sjte
particle and the group average only. This, of course, is ar=4 we find particles which were originally on sités=8
approximation which, however, can be systematically im-and 9.
proved by subsequent multipole expansi¢hZ,1§ of the This simple process, however, introduces a somewhat
spatial distribution of the respective group of particles. strong asymmetry into the treatment of the neighbigrs

The multigrid algorithm employed here groups the lattice=11 and 9. We therefore treat also the nearest-neighbor in-
sites on every level of a hierarchy into blocks which cover ateraction between particles 10 and 9 directly on level 0, and,
linear dimension larger by a factor 2 on each successiveven more, also treat the interaction between particles 10 and
level. To be explicit let us assume that we have a linea8 on level 0 explicitly. The reason for the latter is, that both
lattice of L=2N sites. We then construdt different grids  particles 9 and 8 on level 0 will appear in site=4 on level
each one representing a different “level.” Every particle ap-1. If we only take the interaction between particles 10 and 9
pears on every grid, but the grids on the higher “levels” on level 0, leaving out the interaction between particles 10
contain the particles as groups only, on a grid with a largeand 8 on level 0, obviously we would have a problem on
mesh size. On level 0 we have the original lattice with 2 level 1 in the treatment of the interaction between the sites
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i;=5 and 4. Proceeding to the next higher levels, on each
level we accordingly consider two nearest-neighbor interac-
tions, one of which has been accounted for already on the
level below, and one next-nearest-neighbor interaction. .

The generalization to two and higher spatial dimensions is
obvious. As soon as one site is included in an interaction on
level m, all sites have to be included in the same way on this Ty
level, if they belong to the same block site on levet 1. 1
The other steps of the process are straightforward, and will Ay
not be discussed here further. This multigrid process substan- T
tially reduces the computing effort for the long-range inter-
actions, since instead of LY interactions, wherel is the ey
dimension of the system, we have to consider onlpg,(L) b) . 1 7.
interactions. The efficiency decreases, of course, with the 1T % .
decreasing average density of particles in the system. i

The approximations introduced here lead to some errors . %
in the results; an overlayer structure, for example, is intro- { W T o
duced by this multigrid process. These errors are largest in "E. =
an intermediate range of interactions. The nearest neighbors ST 3 =
are treated exactly, and—for a nonzero average density of e I '

particles—the asymptotic contributions for very distant par-
ticles are also treated increasingly accurately with increasing o

distance. The precision of the calculation can be systemati- ) " ) ) i
cally improved at the cost of more operations on each level, F'C: 2. Comparison of two structures growing via DLA without
(a) and with (b) repulsive interaction. Both figures show a central

For example, instead of only storing the total number of*” © : - .
particles in each coarse-graining box and taking the center 0ﬁlectlon of 100 lattice units in the radius of a much larger cluster.

the box as their average position, one can explicitly store the

average position of the particles in the box and higher MO%e fractal dimension for the cluster grown at a relative po-
ments of their spatial distribution, in order to improve the 9 P

calculation of relative distances. This is systematically doneient'al strength ol),/T=2.8284. Note that the absolute po-

; : ential value is irrelevant, since the particle sticks with infi-
by a usual multipole expansiga7,18. For our purposes we . ' . .
y b P @ 8 puTp nite strength to the cluster once it has made nearest-neighbor

did not exploit these possibilities since we are more inter- ontact with it and so there is no other eneray scale present
ested in basic qualitative results. For those the correct trea(tf— ’ 9y P )

ment of short-range interactions and the correct treatment f order to see whethe_r these _potentlal effects were alre_ady
the long-range tails seemed to be sufficient. caused by short-range interactions, or whether this is typical

of the long-range t# potential, we have introduced a sharp
cutoff at varying distance. In Fig. 4 we show an effective
IIl. NUMERICAL RESULTS FOR CLUSTERS fractal dimension evaluated as in Fig. 3 for clusters of up to
WITH ELASTIC INTERACTION about 4x 10* particles. The fractal dimension seems to de-
end on the strength of the repulsive potential, but not so
We first present our basic results on the gI’OWth of fractal uch on its range. This is a somewhat Surprising result,
ClUSterS W|th ela.StiC interaction betWeen partiC|eS Under %ince one Wouid genera”y not expect a “Criticai” quantity
conventional DLA process where only one particle is mov-jike the fractal dimension to depend on local forces, as long
ing at a time. Afterwards we describe some first results orygg they do not change the symmetry of the system.
the propagation of a fractal front growing out of a back-  The influence of our potential cutoff upon the density of
ground of finite density of adsorbed atoms. the systeniito be precise, upon the prefacigy of the radius-
The effective elastic interaction rf/ between a diffusing dependent densitv(r)] seems to be more pronounced, as

particle and each atom of an immobilized cluster still leadscan be seen in Fig. 5. Again there is a rather strong depen-
to the formation of overall fractal clusters, as far as this can

be demonstrated by our numerics. When the interaction is
repulsive, as is usually the case for elastic forces mediated
over the substrate, the resulting cluster looks generally
denser than a cluster without long-range repulsive interac-
tion. This is shown in Fig. 2. When the interaction is artifi-
cially set to be negative, the cluster looks sparser than with-
out interaction. This was already qualitatively found in
previous investigationgl2].

The fractal dimension—at least for clusters up to some 1
40 000 particles—seems to depend upon the interaction. This
can be seen in Fig. 3, where a log-log plot of the radial FIG. 3. Radial particle density of a medium-size DLA cluster
density of particles versus the radius is shown. The slope okith repulsive elastic interaction. The effective fractal dimension
the fitted curve is equal to2D;, here givingD;~1.94 as seems to be close ©;~2.

Ug/T = 2.8284

0.1}
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|
§
{
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FIG. 4. Effective fractal dimensioD®; in the central region of
the cluster as a function of the repulsive enetdy/T and of the -200
potential cutoff, given in lattice units.
-400 |

dence upon the strength of the interaction potential, but also ., |
the range of the potential now enters more significantly.
For attractive interaction the effect is rather similar, but

the change of the fractal dimension goes in the other direc-®% 50 400 200 0 200 400 600 800
tion. For a maximal attractive value &f,/T= —4 the frac- _

tal dimension of clusters up to some 20 000 particles changes F!G- 6. Cluster of 2¢10° particles grown by a DLA process.
to the value ofD;~1.55, which is significantly below the There is a repulsive elasticr#/interaction between each two par-
value of about 1.7 for Di_A without interactiofi5,19 ticles, the relative interaction strength beldg/T=2.0. The size of

The overall appearance of the clusters with attractive jni" ClUSter is approximately 16d@attice units.

teraction is much more feathery or thinner than for conven-
tional DLA, while for repulsive interactions the structures
look bushier or thicker. the center of the cluster and the fine structure of the growing
In order to elucidate the dependence of the fractal dimenarms of the cluster. This also gives an explanation of why the
sion upon the strength of the interaction, we made somé&esults with and without cutoff in Figs. 4 and 5 do not differ
large-scale clusters with relatively strong repulsive potentiafignificantly, since even for infinite cutoff the interaction
and with practically an infinite-range cutoff. Such a clusterstays in some sense finite, as will be further discussed in Sec.
of some 200000 (X 10°) particles is shown in Fig. 6. The V. Itis notyet clear, if the different effective fractal dimen-
arms of the cluster look somewhat “fat,” but still indicate Sion observable near the center of the cluster should really be
conventional fractal behavior. A quantitative analysis isinterpreted as a fractal dimension or only as a crossover to a
shown in Fig. 7, where, as in Fig. 3, a log-log plot of the compact cluster of dimension 2. In our scaling analysis be-
radial density depending upon the radius is given. The dat®w we will also leave this point open.
represent an average over eight independently grown clus- A first result of growth structures obtained from the mul-
ters. What one clearly now sees is an inner region inside Hgrid growth algorithm is shown in Fig. 8. The observed
radius of about 140 lattice units, where an effective fractaffractal dimensions on length scales shorter than the effective
dimension ofD¢~1.85 can be defined, and an outer regiondiffusion length (see Ref.[20] for comparison scales in
between 14€r <500 where a DLA value oD;~1.74 not agreement with Figs. 4 and 5. Note that in contrast to the first
significantly different from the conventional value sf1.71 intuition, the effective fractal dimension on the right side of
is recovered. Fig. 8 is larger than on the left. Further details will be pub-
These result§Figs. 6 and Y indicate that even the long- lished elsewhere.
range interaction of Y,/T) /3 does not change the

asymptotic value of the fractal dimension, but only affects
UgksT = 2.0
0.7 . . : : z
* full potential o =
| R % cutoff 3lu x g
. 061+ 00 + cutoff 21u + = ;
& N % D@ =1.74
S 05 VI T 041 ' \
k3] 0 « + \
3 \
B 047 o X+ .
o +
o X 1 10 100
03t o radius
o]
0.2 . . . . FIG. 7. Log-log plot of radial density vs radius of clusters like
0 ! energy2-scale U%/T 4 the one seen in Fig. 6, with elastic repulsion between particles. The

data show an average over eight independently grown clusters. A
FIG. 5. Prefactopg of the radial density in the central region of crossover in the slope of the plot around a radius,af 140, from
the cluster as function of the repulsive enefldy/T and of the an effective fractal dimension dD;~1.85 near the center to a
potential cutoff. lower valueD¢~1.74 at large sizes, is clearly seen.
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that fjord. Its minimal value must be larger than about 2, in
order for a particle to enter the fjord without being captured
at the entrance. A reasonable value, still of the order of unity
but large enough that the potential in the center of the fjord
can be neglected, would givg,~5 as a rough estimate.

Obviously one can relate this energy scélewith the
interaction energyJ, introduced above. A particle which
comes from a distant point to a large dense cluster has to
overcome a potential barrier of

~ o
Uzwf drrUq/rd, )
1

which gives simply

FIG. 8. Growth fronts growing in the upward direction from a U=CyUq(1—1/ry). 3
two-dimensional gas of nonvanishing density 0.15. There is a
repulsive 1v® interactionU, /T=1.0 between the atoms in the right This representation already contains our artificially intro-
figure, and no interaction in the left figure. Note that the effectiveduced cutoff radius,. The constanCy~ 3.3 contains a cor-
fractal dimension is lower on the left and higher on the right. rection for the discreteness of our square lattice instead of the
continuous integraf2).
Inserting numbers, one quickly finds that the crossover
IV. SCALING THEORY FOR CLUSTERS radius ofr y=~140 observed in Fig. 7 is also within the same
WITH ELASTIC INTERACTION order of magnitude as obtained from the scaling re$tits.

The qualitative effect of an interaction between the diffus-(l) and(3)]. Unfortunately it is not easy to study the varia-

ing particle and a cluster of aggregated particles can be ury—On .Of the crossover radius W't.h 'the. !nteractlon' strength nu-
derstood as follows. Assume that the interaction is repulsiv erlca_llly ywtr_\.satlsfactory precision if the relative potential
and decaying with distance and, of course, apart from a O/T.'S S|gn|f|cantly smaller than the V?'“e. .Of 2, the. effec-
infinite attractive force acting to keep the particle fixed at i'[stIve dtlrr]nenszonwnia;r tr;ethcenter IS tn?t S|gn|:‘j|cta;]ntly different
cluster site, as soon as it has made contact with the cIusteF.ro.m € value=_.7 of the asymplolcs, and e Ccrossover
Assume, for the moment, that a large dense cluster exis&Olnt qanr_mt be located without amb|gl_J|ty. If the interaction
of approximately circular shape which has a baylike opemng%otem'e;' is much stronger, the repulsion leads o an enor-
of appreciable depth and a width of several lattice sites ?_us slowing 'IO bl ot the 6}[99 etga 0 bp ocess, a € sta-
some place on its periphery. A particle near the opening o IStics over available computing imes become very poor.

that bay will “feel” a less pronounced repulsive potential on for?r:]é Eerrggl'czrlgugrlzrr:mtét?resrefog .f]OfF”_ez f(rSO;nn(;h;) rers]g;':]s
the axis of that “fjord” or bay, and will with increased prob- ) ud ical p t with thglv I'I flg : las. A f’ whi
ability enter the fiord. are in good agreement wi e scaling formulas. A few cor-

On the axis of the fiord, the repulsive potential relative torections could have been included into these formulas—for
the walls of the fiord is a'minimum. To be explicit, we as- example, that, of course, the aggregating cluster is not really

sume that the potential barrier to be overcome by the particlgense_bm this would have been too much analytical detail

in order to move from the axis of the fjord to one of its sides'" comparison to numerical evidence. In any case the data

~ _ N ] give strong support for the concept that even for this long-
peU. It is now ob_v_|ous that the probablllty. of the particle Fo range potential of 17 the asymptotic scaling of the growing
jump from a position on the axis of the fjord to one of its fractal cluster is not changed from the behavior observed
sides is reduced by a factor efexp(—U/T) compared to a without additional interaction.

jump of similar distance in direction along the axis of the In summary we have studied the growth of two-
fiord. In other words, the particle will make on the order of dimensional fractal adsorbate clusters growing by a DLA

exp(+ L‘Jm more jumps of equal length in a direction along Process with effective long-range _elasti¢317nteraction be-
the axis of the fiord than in a direction toward the walls. tween the adsorbate atoms. We find, as a central result, that

Consequently, a particle can be expected to travel a distandBere exists a crossover radiug (depending exponentially

1 ' o upon the strength of the interactiproutside of which the
of expGUI/T) |r_1to such_a flord t_)efgre itis captured at one.of cluster grows with the same fractal dimension of abbut
the walls. This explains qualitatively why under repulsive

. . . ; ~1.7 as observed in conventional DLA. Inside that cross-
interaction the resulting fractal structures look in some Sensg, o 14 4js the fractal dimension of the cluster torso seems to

denser than without interaction. Eurthermore, this explaing, increasing toward a value B, =2 for increasing repul-
that a new length scale appears in the process, sive interaction, and decreasing smoothly towRse- 1.5 for
- an increasingly attractive 1 interaction. One can finally
rx=rwexpzU/T), (1)  speculate that the fractal dimension would change even
asymptotically if the interaction potential were to decay only
which we will interpret just below as a crossover length. Thewith 1/r2, as was recently found for the Eden mod2L];
prefactorr,, on the right-hand side stands for the width of however, this is beyond the scope of the present investiga-
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tions. Our results indicate that for practical applications, e.g., ACKNOWLEDGMENTS

in molecular-beam epitaxy, the cluster properties will depend
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