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Fractal growth of epitaxial surface clusters with elastic interaction

J. Steinbrecher, H. Mu¨ller-Krumbhaar, E. Brener, C. Misbah,* and P. Peyla†

Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany
~Received 17 November 1998!

The fractal growth of clusters adsorbed on crystal surfaces has been studied by Monte Carlo simulations.
Elastic interactions between the atoms through the substrate have been included. Attractive and repulsive
interaction potentials 1/r 3 have been used, including a varying cutoff for the range of interaction. As an
important result we find that there exists a crossover radius beyond which the fractal dimension of the cluster
corresponds to the fractal dimension of conventional two-dimensional diffusion limited aggregation. The
crossover radius itself and the properties of the cluster inside that radius depend sensitively on the details of the
interaction. The results have been analyzed by a scaling theory. Furthermore, we have implemented a multigrid
scheme which allows for very efficient simulation of a large number of mobile atoms with long-range inter-
action on the surface.@S1063-651X~99!09404-0#

PACS number~s!: 68.10.Et, 68.55.2a
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I. INTRODUCTION

The formation of monatomic layers of atoms adsorbed
a substrate of different atoms or molecules is a proces
great interest in crystal growth@1–3#, and for the manufac-
turing of semiconductor devices. Under low deposition ra
clusters are formed on flat substrates. If the surf
diffusivity—and in particular the edge diffusivity—is suffi
ciently low, the clusters will show a ramification durin
growth. This process has been studied in great detail un
the title ‘‘diffusion limited aggregation’’~DLA ! @4#.

This so-called epitaxial growth of a new layer on a su
strate of different material leads generally to a deformat
of the substrate lattice because of a mismatch of the la
constants of the substrate and the adsorbed material. A s
adsorbed cluster up to some limiting size will acquire t
lattice structure of the substrate apart from a small lo
change in the lattice parameter. This ‘‘coherent’’ lattice d
formation causes elastic stress in both the adsorbate an
substrate, leading to effective long-range interactions
tween the adsorbate atoms mediated by the substrate d
mations. This effective elastic interaction potential betwe
any two adsorbed atoms is typically repulsive, and depe
on their distancer like 1/r 3 @5–8#. The total interaction en-
ergy in an adsorbed cluster is then obtained by the sum
tion of the individual contributions from any two pairs o
atoms, as long as the cluster remains coherent with the
strate.

A number of recent investigations have looked at DL
with interactions@9,10#. Some investigations even deal wi
long-range interactions@11–13# of the type discussed here
but we are not aware of any attempts to study the asymp
behavior of the structures for large cluster sizes. In addit
we have varied the range of interaction systematically
introducing a sharp cutoff which limits the 1/r 3 potential at
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some cutoff radiusr 0; furthermore, attractive interaction
also were considered for comparison. As a main result
find a change of properties of the growing cluster when
radius exceeds a crossover radiusr X . This crossover radius
depends on the strength and the range of interaction,
remains finite even for the long-range elastic interact
without finite cutoff.

The paper is organized as follows. First we describe
algorithms schematically. This concerns the simple al
rithm for DLA with vanishing density of adsorbate atoms f
away from the cluster and also the multigrid algorithm for
finite density of atoms at infinity, both algorithms, of cours
being effective for long-range potentials. Then we give t
numerical results, and finally we present our scaling conc
and show that it is consistent with the numerical resu
within the present numerical accuracy.

II. ALGORITHMS FOR LONG-RANGE POTENTIALS

The basis for our cluster-growth algorithm is the origin
method of Witten and Sander@4,14# for diffusion limited
aggregation without interaction, in the version of Meak
@15# for a reduced start radiusr s . With interaction between
particles the probability for starting a particle on the st
radius is no longer isotropic over the circle, but depen
through a Boltzmann weight exp(2Us/T), upon the local po-
tential on the start circle@12#. The process is now describe
in some detail.

The substrate is represented as a square lattice of at
20002 sites. One adatom is fixed at the center. Two circ
are defined, an outer one with a capture radiusr cap'1000
lattice site and an inner one with a start radiusr s'100 lattice
site. The lattice sites carry the potential from the initial ce
tral adatom approximately equal toU0 /r 3. A new particle is
then released from the start circle, the position chosen
proportion to the Boltzmann weight, as mentioned above
principle one should choose the probability according to
first passage-time calculation, assuming that the part
starts originally from the outer capture radius. The Bol
mann weight introduces an error which is small when
potential energy close to the cluster is large, and when
5600 ©1999 The American Physical Society
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PRE 59 5601FRACTAL GROWTH OF EPITAXIAL SURFACE . . .
start radius is far away from the cluster. A small start rad
saves computing time. For different values of the prefac
U0 of the interaction potential, we have checked that
error introduced by a small start radius, which is very clo
to the most prominent point of the cluster, is not detecta
within our available accuracy. Practically, start radii wi
distances between four and 100 lattice units from the clu
were used.

After the particle is started, it performs diffusion jumps
a potential field. Several Monte Carlo algorithms we
tested; the results presented here were largely obtained
Metropolis algorithm. This algorithm states@16# that a new
trial state is accepted, if either the energy differenceDU to
the old state is negative or else if exp(2DU/T).Xr , where
Xr is a random number evenly distributed in the interv
between 0 and 1, andT is the temperature of the system.
each diffusion jump we pick one of four nearest-neighb
sites at random as a trial site, and then make a Metrop
decision for acceptance.

This diffusion process continues until either the parti
wanders outside the capture radius, or until it hits the cen
cluster ~one adatom, at first!. When it exceeds the captur
radius it is removed, and a new particle is inserted at the s
radius. When it hits the central cluster at a nearest-neigh
position, it becomes immobilized and is added to the clus
Then the potential from this particle is added to all latti
sites inside the capture radius. After this a new particle
inserted at the start radius, and so forth. The computing t
is not exorbitantly larger than for DLA without interaction
since a full diffusion process on a lattice with diameterL
takes 'L2 steps, and so does the updating of the tw
dimensional lattice after incorporating one atom into t
cluster. This process works well as long as there is only
moving particle in the system.

If we have a nonzero density of moving particles w
long-range interaction in the system, this direct procedur
too time consuming. We therefore introduced a multig
algorithm which we now describe in somewhat sketc
form. Most of the following results, however, have been o
tained with the simpler algorithm described here above.

The multigrid algorithm starts from the idea that the lon
range interaction potential is sufficiently smooth, like
power-law interaction. In this case the relative variation
the interaction, depending upon the distance of the two p
ticles, decreases with the distance. Instead of evaluating
interaction between all pairs of particles explicitly, one c
first average over some region of space containing a grou
particles, and then take the interaction between one spe
particle and the group average only. This, of course, is
approximation which, however, can be systematically i
proved by subsequent multipole expansions@17,18# of the
spatial distribution of the respective group of particles.

The multigrid algorithm employed here groups the latt
sites on every level of a hierarchy into blocks which cove
linear dimension larger by a factor 2 on each succes
level. To be explicit let us assume that we have a lin
lattice of L52N sites. We then constructN different grids
each one representing a different ‘‘level.’’ Every particle a
pears on every grid, but the grids on the higher ‘‘level
contain the particles as groups only, on a grid with a lar
mesh size. On level 0 we have the original lattice withN
s
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sites. On level 1 we have performed a coarse graining b
factor of 2, so that we have 2N21 sites. The mesh size ac
cordingly is also increased by a factor 2. On level 2 anot
coarse graining takes place, so that we have 2N22 sites, and
so on. If there is a particle on level 0 at positioni 0, this
particle will also appear in the next higher level at positi
i 15Int( i 0/2), wherei m(m50,1,2,3, . . . ,N) are all truncated
integers. Note that in principle there may be an arbitra
number of particles at each sitei m(m.0). For example, if
there are two particles sitting at sites 2 and 3 on level 0, t
both will appear on site 1 on level 1 and on site 0 on leve
and higher levels.

The interaction between one particle and all other p
ticles in this one-dimensional lattice is now computed
follows. We assume that all particles have been put alre
in all the log2(L) levels of our multigrid system. As an ex
ample we are discussing now specifically a particle on
i 0510, the counting of lattice-sites on each levelm starting
at i m50,1,2, . . . ~see Fig. 1!.

We first look at the nearest-neighbor interaction of p
ticle 10, with particle 11 on level 0. Note that on level
particlei 0510 would be in sitei 155 together with its neigh-
bor i 0511, the interaction between those particles has
ready been treated on level 0. We now can directly treat
interaction between sitesi 155 and i 154 on level 1, and
then proceed to the next higher level. Note that in sitei 1
54 we find particles which were originally on sitesi 058
and 9.

This simple process, however, introduces a somew
strong asymmetry into the treatment of the neighborsi 0
511 and 9. We therefore treat also the nearest-neighbo
teraction between particles 10 and 9 directly on level 0, a
even more, also treat the interaction between particles 10
8 on level 0 explicitly. The reason for the latter is, that bo
particles 9 and 8 on level 0 will appear in sitei 154 on level
1. If we only take the interaction between particles 10 an
on level 0, leaving out the interaction between particles
and 8 on level 0, obviously we would have a problem
level 1 in the treatment of the interaction between the s

FIG. 1. Schematic structure of successive levels of coarsene
our multigrid method. The reference site on each level is marked
an open circle. The other circles and the diamond mark nearest
next-nearest neighbors on each level, interacting with the refere
particle. The diamond corresponds to a box, whose interact
have already been taken into account on the level just below.
further details, see the text.
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5602 PRE 59J. STEINBRECHERet al.
i 155 and 4. Proceeding to the next higher levels, on e
level we accordingly consider two nearest-neighbor inter
tions, one of which has been accounted for already on
level below, and one next-nearest-neighbor interaction.

The generalization to two and higher spatial dimension
obvious. As soon as one site is included in an interaction
level m, all sites have to be included in the same way on t
level, if they belong to the same block site on levelm11.
The other steps of the process are straightforward, and
not be discussed here further. This multigrid process subs
tially reduces the computing effort for the long-range int
actions, since instead of;Ld interactions, whered is the
dimension of the system, we have to consider only; log2(L)
interactions. The efficiency decreases, of course, with
decreasing average density of particles in the system.

The approximations introduced here lead to some er
in the results; an overlayer structure, for example, is int
duced by this multigrid process. These errors are larges
an intermediate range of interactions. The nearest neigh
are treated exactly, and—for a nonzero average densit
particles—the asymptotic contributions for very distant p
ticles are also treated increasingly accurately with increas
distance. The precision of the calculation can be system
cally improved at the cost of more operations on each le
For example, instead of only storing the total number
particles in each coarse-graining box and taking the cente
the box as their average position, one can explicitly store
average position of the particles in the box and higher m
ments of their spatial distribution, in order to improve t
calculation of relative distances. This is systematically do
by a usual multipole expansion@17,18#. For our purposes we
did not exploit these possibilities since we are more int
ested in basic qualitative results. For those the correct tr
ment of short-range interactions and the correct treatmen
the long-range tails seemed to be sufficient.

III. NUMERICAL RESULTS FOR CLUSTERS
WITH ELASTIC INTERACTION

We first present our basic results on the growth of frac
clusters with elastic interaction between particles unde
conventional DLA process where only one particle is mo
ing at a time. Afterwards we describe some first results
the propagation of a fractal front growing out of a bac
ground of finite density of adsorbed atoms.

The effective elastic interaction 1/r 3 between a diffusing
particle and each atom of an immobilized cluster still lea
to the formation of overall fractal clusters, as far as this c
be demonstrated by our numerics. When the interactio
repulsive, as is usually the case for elastic forces media
over the substrate, the resulting cluster looks gener
denser than a cluster without long-range repulsive inte
tion. This is shown in Fig. 2. When the interaction is arti
cially set to be negative, the cluster looks sparser than w
out interaction. This was already qualitatively found
previous investigations@12#.

The fractal dimension—at least for clusters up to so
40 000 particles—seems to depend upon the interaction.
can be seen in Fig. 3, where a log-log plot of the rad
density of particles versus the radius is shown. The slop
the fitted curve is equal to 22D f , here givingD f'1.94 as
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the fractal dimension for the cluster grown at a relative p
tential strength ofU0 /T52.8284. Note that the absolute po
tential value is irrelevant, since the particle sticks with in
nite strength to the cluster once it has made nearest-neig
contact with it, and so there is no other energy scale pres
In order to see whether these potential effects were alre
caused by short-range interactions, or whether this is typ
of the long-range 1/r 3 potential, we have introduced a sha
cutoff at varying distance. In Fig. 4 we show an effecti
fractal dimension evaluated as in Fig. 3 for clusters of up
about 43104 particles. The fractal dimension seems to d
pend on the strength of the repulsive potential, but not
much on its range. This is a somewhat surprising res
since one would generally not expect a ‘‘critical’’ quanti
like the fractal dimension to depend on local forces, as lo
as they do not change the symmetry of the system.

The influence of our potential cutoff upon the density
the system@to be precise, upon the prefactorr0 of the radius-
dependent densityr(r )# seems to be more pronounced,
can be seen in Fig. 5. Again there is a rather strong dep

FIG. 2. Comparison of two structures growing via DLA witho
~a! and with ~b! repulsive interaction. Both figures show a centr
section of 100 lattice units in the radius of a much larger cluste

FIG. 3. Radial particle density of a medium-size DLA clust
with repulsive elastic interaction. The effective fractal dimensi
seems to be close toD f'2.
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dence upon the strength of the interaction potential, but a
the range of the potential now enters more significantly.

For attractive interaction the effect is rather similar, b
the change of the fractal dimension goes in the other di
tion. For a maximal attractive value ofU0 /T524 the frac-
tal dimension of clusters up to some 20 000 particles chan
to the value ofD f'1.55, which is significantly below the
value of about 1.7 for DLA without interaction@15,19#.

The overall appearance of the clusters with attractive
teraction is much more feathery or thinner than for conv
tional DLA, while for repulsive interactions the structure
look bushier or thicker.

In order to elucidate the dependence of the fractal dim
sion upon the strength of the interaction, we made so
large-scale clusters with relatively strong repulsive poten
and with practically an infinite-range cutoff. Such a clus
of some 200 000 (23105) particles is shown in Fig. 6. The
arms of the cluster look somewhat ‘‘fat,’’ but still indicat
conventional fractal behavior. A quantitative analysis
shown in Fig. 7, where, as in Fig. 3, a log-log plot of th
radial density depending upon the radius is given. The d
represent an average over eight independently grown c
ters. What one clearly now sees is an inner region insid
radius of about 140 lattice units, where an effective frac
dimension ofD f'1.85 can be defined, and an outer regi
between 140,r ,500 where a DLA value ofD f'1.74 not
significantly different from the conventional value of'1.71
is recovered.

These results~Figs. 6 and 7! indicate that even the long
range interaction of (U0 /T) 1/r 3 does not change th
asymptotic value of the fractal dimension, but only affe

FIG. 4. Effective fractal dimensionD f in the central region of
the cluster as a function of the repulsive energyU0 /T and of the
potential cutoff, given in lattice units.

FIG. 5. Prefactorr0 of the radial density in the central region o
the cluster as function of the repulsive energyU0 /T and of the
potential cutoff.
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the center of the cluster and the fine structure of the grow
arms of the cluster. This also gives an explanation of why
results with and without cutoff in Figs. 4 and 5 do not diff
significantly, since even for infinite cutoff the interactio
stays in some sense finite, as will be further discussed in
IV. It is not yet clear, if the different effective fractal dimen
sion observable near the center of the cluster should reall
interpreted as a fractal dimension or only as a crossover
compact cluster of dimension 2. In our scaling analysis
low we will also leave this point open.

A first result of growth structures obtained from the mu
tigrid growth algorithm is shown in Fig. 8. The observe
fractal dimensions on length scales shorter than the effec
diffusion length ~see Ref.@20# for comparison! scales in
agreement with Figs. 4 and 5. Note that in contrast to the
intuition, the effective fractal dimension on the right side
Fig. 8 is larger than on the left. Further details will be pu
lished elsewhere.

FIG. 6. Cluster of 23105 particles grown by a DLA process
There is a repulsive elastic 1/r 3 interaction between each two pa
ticles, the relative interaction strength beingU0 /T52.0. The size of
the cluster is approximately 16002 lattice units.

FIG. 7. Log-log plot of radial density vs radius of clusters lik
the one seen in Fig. 6, with elastic repulsion between particles.
data show an average over eight independently grown cluster
crossover in the slope of the plot around a radius ofr X'140, from
an effective fractal dimension ofD f'1.85 near the center to a
lower valueD f'1.74 at large sizes, is clearly seen.



s
u
iv
a

its
te
is
in

o
n
-

to
s-
tic
es

to
ts

he
of

g
ls
n

of
ve
ns
in

h
of

in
ed
ity

ord

s to

o-

the

ver
e

-
nu-
al
c-
nt
er
on
or-
sta-
.
ults
ich
or-
for
ally
tail
ata
g-

g
ved

o-
LA

that

ss-
s to

ven
ly

iga-

a

t
ive
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IV. SCALING THEORY FOR CLUSTERS
WITH ELASTIC INTERACTION

The qualitative effect of an interaction between the diffu
ing particle and a cluster of aggregated particles can be
derstood as follows. Assume that the interaction is repuls
and decaying with distance and, of course, apart from
infinite attractive force acting to keep the particle fixed at
cluster site, as soon as it has made contact with the clus

Assume, for the moment, that a large dense cluster ex
of approximately circular shape which has a baylike open
of appreciable depth and a width of several lattice sites
some place on its periphery. A particle near the opening
that bay will ‘‘feel’’ a less pronounced repulsive potential o
the axis of that ‘‘fjord’’ or bay, and will with increased prob
ability enter the fjord.

On the axis of the fjord, the repulsive potential relative
the walls of the fjord is a minimum. To be explicit, we a
sume that the potential barrier to be overcome by the par
in order to move from the axis of the fjord to one of its sid

be Û. It is now obvious that the probability of the particle
jump from a position on the axis of the fjord to one of i

sides is reduced by a factor of;exp(2Û/T) compared to a
jump of similar distance in direction along the axis of t
fjord. In other words, the particle will make on the order

exp(1Û/T) more jumps of equal length in a direction alon
the axis of the fjord than in a direction toward the wal
Consequently, a particle can be expected to travel a dista

of exp(12Û/T) into such a fjord before it is captured at one
the walls. This explains qualitatively why under repulsi
interaction the resulting fractal structures look in some se
denser than without interaction. Furthermore, this expla
that a new length scaler X appears in the process,

r X'r wexp~ 1
2 Û/T!, ~1!

which we will interpret just below as a crossover length. T
prefactorr w on the right-hand side stands for the width

FIG. 8. Growth fronts growing in the upward direction from
two-dimensional gas of nonvanishing densityr50.15. There is a
repulsive 1/r 3 interactionU0 /T51.0 between the atoms in the righ
figure, and no interaction in the left figure. Note that the effect
fractal dimension is lower on the left and higher on the right.
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that fjord. Its minimal value must be larger than about 2,
order for a particle to enter the fjord without being captur
at the entrance. A reasonable value, still of the order of un
but large enough that the potential in the center of the fj
can be neglected, would giver w'5 as a rough estimate.

Obviously one can relate this energy scaleÛ with the
interaction energyU0 introduced above. A particle which
comes from a distant point to a large dense cluster ha
overcome a potential barrier of

Û5pE
1

r 0
dr rU 0 /r 3, ~2!

which gives simply

Û5C0 U0 ~121/r 0!. ~3!

This representation already contains our artificially intr
duced cutoff radiusr 0. The constantC0'3.3 contains a cor-
rection for the discreteness of our square lattice instead of
continuous integral~2!.

Inserting numbers, one quickly finds that the crosso
radius ofr X'140 observed in Fig. 7 is also within the sam
order of magnitude as obtained from the scaling results@Eqs.
~1! and ~3!#. Unfortunately it is not easy to study the varia
tion of the crossover radius with the interaction strength
merically with satisfactory precision: if the relative potenti
U0 /T is significantly smaller than the value of 2, the effe
tive dimension near the center is not significantly differe
from the value'1.7 of the asymptotics, and the crossov
point cannot be located without ambiguity. If the interacti
potential is much stronger, the repulsion leads to an en
mous slowing down of the aggregation process, and the
tistics over available computing times become very poor

Our central argument, therefore, comes from the res
for the numerical parameters given in Figs. 6 and 7, wh
are in good agreement with the scaling formulas. A few c
rections could have been included into these formulas—
example, that, of course, the aggregating cluster is not re
dense—but this would have been too much analytical de
in comparison to numerical evidence. In any case the d
give strong support for the concept that even for this lon
range potential of 1/r 3 the asymptotic scaling of the growin
fractal cluster is not changed from the behavior obser
without additional interaction.

In summary we have studied the growth of tw
dimensional fractal adsorbate clusters growing by a D
process with effective long-range elastic 1/r 3 interaction be-
tween the adsorbate atoms. We find, as a central result,
there exists a crossover radiusr X ~depending exponentially
upon the strength of the interaction!, outside of which the
cluster grows with the same fractal dimension of aboutD f
'1.7 as observed in conventional DLA. Inside that cro
over radius the fractal dimension of the cluster torso seem
be increasing toward a value ofD f52 for increasing repul-
sive interaction, and decreasing smoothly towardD f'1.5 for
an increasingly attractive 1/r 3 interaction. One can finally
speculate that the fractal dimension would change e
asymptotically if the interaction potential were to decay on
with 1/r 2, as was recently found for the Eden model@21#;
however, this is beyond the scope of the present invest
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tions. Our results indicate that for practical applications, e
in molecular-beam epitaxy, the cluster properties will depe
in a rather sensitive way upon the lattice mismatch betw
the adsorbate and substrate since this directly affects th
teraction parameter which enters exponentially into
crossover radius.
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